Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.381
Filtrar
1.
Curr Protoc ; 4(3): e1003, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483112

RESUMO

The human lymphoblastoid cell line TK6 stands out as the most widely employed human cell line in genotoxicity testing, as recommended by various testing guidelines for in vitro assessments. Nevertheless, like many testing cell lines, TK6 lacks functional phase I drug-metabolizing enzymes crucial for chemical genotoxicity evaluations. This protocol introduces a lentivirus-based methodology for establishing a panel of TK6-derived cell lines, each expressing one of 14 cytochrome P450s (CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, and CYP3A7). The utilization of a lentiviral expression system ensures stable transduction, offering notable advantages such as sustained transgene expression, high transduction efficiency, positive selection feasibility, and user-friendly application. Additionally, we present a detailed procedure for validating the enhanced expression of each CYP in the established cell lines through real-time PCR, western blotting, and mass spectrometry analysis. Lastly, we exemplify the application of these CYP-expressing TK6 cell lines in genotoxicity testing, employing a flow-cytometry-based in vitro micronucleus test. Published 2024. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Lentivirus production and transduction for TK6 cells Support Protocol: Selecting a single clone of CYP-expressing TK6 cells Basic Protocol 2: Validation of CYP expression in TK6 cell lines Basic Protocol 3: Application of transduced cell lines in flow-cytometry-based micronucleus assay.


Assuntos
Sistema Enzimático do Citocromo P-450 , Lentivirus , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP2E1/genética , Linhagem Celular
2.
Redox Biol ; 71: 103107, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479224

RESUMO

Fibroblast growth factor 23 (FGF23) is a member of endocrine FGF family, along with FGF15/19 and FGF21. Recent reports showed that under pathological conditions, liver produces FGF23, although the role of hepatic FGF23 remains nebulous. Here, we investigated the role of hepatic FGF23 in alcoholic liver disease (ALD) and delineated the underlying molecular mechanism. FGF23 expression was compared in livers from alcoholic hepatitis patients and healthy controls. The role of FGF23 was examined in hepatocyte-specific knock-out (LKO) mice of cannabinoid receptor type 1 (CB1R), estrogen related receptor γ (ERRγ), or FGF23. Animals were fed with an alcohol-containing liquid diet alone or in combination with ERRγ inverse agonist. FGF23 is mainly expressed in hepatocytes in the human liver, and it is upregulated in ALD patients. In mice, chronic alcohol feeding leads to liver damage and induced FGF23 in liver, but not in other organs. FGF23 is transcriptionally regulated by ERRγ in response to alcohol-mediated activation of the CB1R. Alcohol induced upregulation of hepatic FGF23 and plasma FGF23 levels is lost in ERRγ-LKO mice, and an inverse agonist mediated inhibition of ERRγ transactivation significantly improved alcoholic liver damage. Moreover, hepatic CYP2E1 induction in response to alcohol is FGF23 dependent. In line, FGF23-LKO mice display decreased hepatic CYP2E1 expression and improved ALD through reduced hepatocyte apoptosis and oxidative stress. We recognized CBIR-ERRγ-FGF23 axis in facilitating ALD pathology through hepatic CYP2E1 induction. Thus, we propose FGF23 as a potential therapeutic target to treat ALD.


Assuntos
Citocromo P-450 CYP2E1 , Hepatopatias Alcoólicas , Animais , Humanos , Camundongos , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Agonismo Inverso de Drogas , Etanol/farmacologia , Hepatócitos/metabolismo , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Estresse Oxidativo
3.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 923-930, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37535075

RESUMO

Oltipraz (OPZ) is a synthetic dithiolethione with potential as a cancer chemopreventive agent, which can work by inducing detoxification enzymes. OPZ is an activator of nuclear factor erythroid 2-related factor 2 (Nrf2), suggesting its involvement in enzyme induction and possible protection against drug-induced liver injury. In this study, we present OPZ-mediated protection of mice against acetaminophen (APAP)-induced liver injury and discuss its possible contributing factors. Overnight-fasted male CD-1 mice were administered APAP intraperitoneally, and some mice were administered OPZ 16 h before APAP. Hepatotoxicity was assessed by measuring serum alanine aminotransferase leakage and histopathological evaluation. The hepatic mRNA expressions of CYP2E1, glutamate cysteine ligase (GCL), and NAD(P)H:quinone oxidoreductase (NQO1) were measured by real-time reverse-transcription polymerase chain reaction. OPZ protected mice from APAP-induced liver injury in a dose-dependent manner, but did not alter hepatic glutathione (GSH) content or GCL expression in control mice, indicating that its hepatoprotective effect is not due to changes in basal GSH levels. OPZ did not affect CYP2E1 expression or APAP-induced early GSH depletion, suggesting it does not inhibit the metabolic activation of APAP to produce N-acetyl-p-benzoquinone imine. In contrast, after GSH depletion, OPZ accelerated hepatic GSH recovery. APAP significantly increased GCL expression during liver injury, but OPZ treatment only led to additional NQO1 expression. This suggests that NQO1 is responsible for the enhanced GSH recovery and protection against APAP-induced liver injury seen in OPZ-treated mice. In summary, OPZ protects against APAP-induced liver injury by inducing NQO1 expression and resulting in improved GSH recovery.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Pirazinas , Tionas , Tiofenos , Masculino , Animais , Camundongos , Acetaminofen/toxicidade , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/farmacologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fígado , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Glutationa/metabolismo , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo
4.
Xenobiotica ; 53(10-11): 573-580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37934191

RESUMO

Cytochromes P450 (CYPs or P450s) are important enzymes for drug metabolism. Tree shrews are non-primate animal species used in various fields of biomedical research, including infection (especially hepatitis viruses), depression, and myopia. A recent tree shrew genome analysis indicated that the sequences and the numbers of P450 genes are similar to those of humans; however, P450s have not been adequately identified and analysed in this species.In this study, a novel CYP2E1 was isolated from tree shrew liver and was characterised in comparison with human, dog, and pig CYP2E1. Tree shrew CYP2E1 and human CYP2E1 showed high amino acid sequence identity (83%) and were closely related in a phylogenetic tree.Gene and genome structures of CYP2E1 were generally similar in humans, dogs, pigs, and tree shrews. Tissue expression patterns showed that tree shrew CYP2E1 mRNA was predominantly expressed in liver, just as for dog and pig CYP2E1 mRNAs. In tree shrews, recombinant CYP2E1 protein and liver microsomes metabolised chlorzoxazone and p-nitrophenol, probe substrates of human CYP2E1, just as they do in dogs and pigs.These results suggest that tree shrew CYP2E1 encodes a functional drug-metabolising enzyme that plays a role in the liver, similar to human CYP2E1.


Assuntos
Citocromo P-450 CYP2E1 , Tupaia , Humanos , Suínos , Animais , Cães , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Tupaia/metabolismo , Clorzoxazona/metabolismo , Tupaiidae/metabolismo , Filogenia , Musaranhos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/metabolismo
5.
Asian Pac J Cancer Prev ; 24(11): 3795-3804, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019237

RESUMO

BACKGROUND: Oxidative stress combined with nullity of xenobiotic metabolizing GSTT1/GSTM1/CYP2E1 genes may increase the susceptibility of agricultural workers to adverse health effects including cancer. The present study was conducted to determine; the prevalence of polymorphisms in GSTM1, GSTT1 and CYP2E1 genes, serum 8-hydroxy-2'-deoxygunosine levels, and the role of these markers in risk of cancer among agricultural workers occupationally exposed to pesticides. METHODS: A total of 360 participants, of which 180 belonging to farming group diagnosed with leukemia (n=60), lymphoma (n=60) and breast cancers (n=60), 90 in non-farming group diagnosed with similar cancers and the other 90 as healthy controls with neither history of occupational exposure nor diagnosed with any type of cancers were recruited. Following the questionnaire survey, serum 8-OHdG and genetic polymorphisms in the three genes were determined using ELISA and PCR methods respectively. RESULTS: The results of the study revealed that farm workers carrying GSTT1 null genotype had increased risk for lymphoma (OR = 5.34; 95% CI = 1.80-15.82) and breast cancer (OR=4.04; 95% CI = 1.24-13.07). For farm workers carrying GSTM1 null genotype, the risk was six-fold for breast cancer (OR = 6.88; 95% CI =1.88-25.99). Further, there found a significant difference between 8-OHdG and nullity of CYP2E1 among the farm workers diagnosed with leukemia. CONCLUSION: The findings of the present study suggest that the polymorphisms in detoxifying genes among farm workers occupationally exposed to pesticides and the oxidative stress may likely be responsible for triggering the mechanism of malignancy.


Assuntos
Neoplasias da Mama , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Leucemia , Linfoma , Praguicidas , Humanos , Feminino , Fazendeiros , Praguicidas/efeitos adversos , Citocromo P-450 CYP2E1/genética , Xenobióticos , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Polimorfismo Genético/genética , 8-Hidroxi-2'-Desoxiguanosina
6.
Curr Drug Metab ; 24(10): 684-699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927072

RESUMO

AIMS: To identify single nucleotide polymorphisms (SNPs) of paracetamol-metabolizing enzymes that can predict acute liver injury. BACKGROUND: Paracetamol is a commonly administered analgesic/antipyretic in critically ill and chronic renal failure patients and several SNPs influence the therapeutic and toxic effects. OBJECTIVE: To evaluate the role of machine learning algorithms (MLAs) and bioinformatics tools to delineate the predictor SNPs as well as to understand their molecular dynamics. METHODS: A cross-sectional study was undertaken by recruiting critically ill patients with chronic renal failure and administering intravenous paracetamol as a standard of care. Serum concentrations of paracetamol and the principal metabolites were estimated. Following SNPs were evaluated: CYP2E1*2, CYP2E1_-1295G>C, CYP2D6*10, CYP3A4*1B, CYP3A4*2, CYP1A2*1K, CYP1A2*6, CYP3A4*3, and CYP3A5*7. MLAs were used to identify the predictor genetic variable for acute liver failure. Bioinformatics tools such as Predict SNP2 and molecular docking (MD) were undertaken to evaluate the impact of the above SNPs with binding affinity to paracetamol. RESULTS: CYP2E1*2 and CYP1A2*1C genotypes were identified by MLAs to significantly predict hepatotoxicity. The predictSNP2 revealed that CYP1A2*3 was highly deleterious in all the tools. MD revealed binding energy of -5.5 Kcal/mol, -6.9 Kcal/mol, and -6.8 Kcal/mol for CYP1A2, CYP1A2*3, and CYP1A2*6 against paracetamol. MD simulations revealed that CYP1A2*3 and CYP1A2*6 missense variants in CYP1A2 affect the binding ability with paracetamol. In-silico techniques found that CYP1A2*2 and CYP1A2*6 are highly harmful. MD simulations revealed CYP3A4*2 (A>G) had decreased binding energy with paracetamol than CYP3A4, and CYP3A4*2(A>T) and CYP3A4*3 both have greater binding energy with paracetamol. CONCLUSION: Polymorphisms in CYP2E1, CYP1A2, CYP3A4, and CYP3A5 significantly influence paracetamol's clinical outcomes or binding affinity. Robust clinical studies are needed to identify these polymorphisms' clinical impact on the pharmacokinetics or pharmacodynamics of paracetamol.


Assuntos
Citocromo P-450 CYP1A2 , Falência Renal Crônica , Humanos , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Acetaminofen/efeitos adversos , Acetaminofen/metabolismo , Polimorfismo de Nucleotídeo Único , Simulação de Acoplamento Molecular , Estado Terminal , Estudos Transversais , Fígado/metabolismo , Falência Renal Crônica/metabolismo , Aprendizado de Máquina Supervisionado , Algoritmos
7.
Iran J Med Sci ; 48(5): 474-483, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37786472

RESUMO

Background: Anti-tuberculosis drug-induced hepatotoxicity can result from genetic polymorphism of the isoniazid (INH) metabolizing enzyme. This study aimed to determine the effect of genetic polymorphism of N-acetyltransferase 2 (NAT2) and cytochrome P450 2E1 (CYP2E1) genes on serum isoniazid level and drug-induced hepatotoxicity. Methods: A cross-sectional study was conducted on 120 patients (with and without hepatotoxicity) with pulmonary tuberculosis from June 2019 to April 2022 in Tehran (Iran). High-performance liquid chromatography was used to measure the serum concentration of INH and acetylisoniazid (AcINH). NAT2 and CYP2E1 genotypes were determined using polymerase chain reaction and restriction fragment length polymorphism methods. Data were analyzed using SPSS software (version 22.0) with independent two-sample t test, Chi square test, or Fisher's exact test. P<0.05 was considered statistically significant. Results: A total of 40 patients showed hepatotoxicity. The risk of anti-tuberculosis drug-induced hepatotoxicity was significantly higher in patients who are slow acetylator (SA) phenotype than in rapid or intermediate acetylator (P<0.001). NAT2*4/*4 genotypes were not found in patients with hepatotoxicity. The frequency of NAT2*5 and NAT2*6 haplotypes and serum INH concentration was significantly higher in patients with hepatotoxicity than in those without (P=0.003, P<0.001, and P<0.001, respectively). NAT2*4 haplotype was correlated with protection against hepatotoxicity. A combination of SA and CYP2E1 C1/C1 genotype was significantly associated with hepatotoxicity (P<0.001). Conclusion: Hepatotoxicity in Iranian patients with tuberculosis was confirmed due to the presence of NAT2 SA polymorphism. Determining NAT2 and CYP2E1 genotypes and/or INH concentration can be a valuable tool to identify patients susceptible to hepatotoxicity.


Assuntos
Arilamina N-Acetiltransferase , Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Isoniazida/efeitos adversos , Antituberculosos/efeitos adversos , Citocromo P-450 CYP2E1/genética , Estudos Transversais , Irã (Geográfico) , Genótipo , Doença Hepática Induzida por Substâncias e Drogas/genética , Acetiltransferases/genética , Arilamina N-Acetiltransferase/genética
8.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834223

RESUMO

Little is known about the potential role of epigenetic marks as predictors of the resolution of obesity-related comorbidities after bariatric surgery. In this study, 20 patients were classified according to the metabolic improvement observed 6 months after sleeve gastrectomy, based on the diagnosis of metabolic syndrome, into responders if metabolic syndrome reversed after bariatric surgery (n = 10) and non-responders if they had metabolic syndrome bariatric surgery (n = 10). Blood DNA methylation was analyzed at both study points using the Infinium Methylation EPIC Bead Chip array-based platform. Twenty-six CpG sites and their annotated genes, which were previously described to be associated with metabolic status, were evaluated. Cg11445109 and cg19469447 (annotated to Cytochrome P450 2E1 (CYP2E1) gene) were significantly more hypomethylated in the responder group than in the non-responder group at both study points, whilst cg25828445 (annotated to Nucleolar Protein Interacting With The FHA Domain Of MKI67 Pseudogene 3 (NIFKP3) gene) showed to be significantly more hypermethylated in the non-responder group compared to the responder group at both study points. The analysis of the methylation sites annotated to the associated genes showed that CYP2E1 had 40% of the differentially methylated CpG sites, followed by Major Histocompatibility Complex, Class II, DR Beta 1 (HLA-DRB1) (33.33%) and Zinc Finger Protein, FOG Family Member 2 (ZFPM2) (26.83%). Cg11445109, cg19469447 and cg25828445 could have a role in the prediction of metabolic status and potential value as biomarkers of response to bariatric surgery.


Assuntos
Cirurgia Bariátrica , Síndrome Metabólica , Humanos , Epigenoma , Síndrome Metabólica/genética , Citocromo P-450 CYP2E1/genética , Ilhas de CpG , Metilação de DNA , Análise de Sequência com Séries de Oligonucleotídeos , Epigênese Genética
9.
Chemosphere ; 341: 139998, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37657698

RESUMO

Furan is a widespread endogenous contaminant in heat-processed foods that can accumulate rapidly in the food chain and has been widely detected in foods, such as wheat, bread, coffee, canned meat products, and baby food. Dietary exposure to this chemical may bring health risk. Furan is classified as a possible category 2B human carcinogen by the International Agency for Research on Cancer, with the liver as its primary target organ. Hepatic fibrosis is the most important nontumoral harmful effect of furan and also an important event in the carcinogenesis of furan. Although the specific mechanism of furan-induced liver fibrosis is still unclear, it may involve oxidative stress and genetic toxicity, in which the activation of cytochrome P450 2E1 (CYP2E1) may be the key event. Thus, we conducted a study using an integrating multi-endpoint genotoxicity platform in 120-day in vivo subchronic toxicity test in rats. Results showed that the rats with activated CYP2E1 exhibited DNA double-strand breaks in D4, gene mutations in D60, and increased expression of reactive oxygen species and nuclear factor erythroid 2-related factor 2 in D120. Necrosis, apoptosis, hepatic stellate cell activation, and fibrosis also occurred in the liver, suggesting that furan can independently affect liver fibrosis through oxidative stress and genotoxicity pathways. Point of Departure (PoD) was obtained by benchmark-dose (BMD) method to establish health-based guidance values. The human equivalent dose of PoD derived from BMDL05 was 2.26 µg/kg bw/d. The findings laid a foundation for the safety evaluation and risk assessment of furan and provided data for the further construction and improvement of the adverse outcome pathway network in liver fibrosis.


Assuntos
Rotas de Resultados Adversos , Citocromo P-450 CYP2E1 , Animais , Ratos , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Furanos/metabolismo , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Estresse Oxidativo
10.
Cell Death Dis ; 14(8): 566, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633951

RESUMO

Nonalcoholic fatty liver disease (NAFLD) begins with excessive triglyceride accumulation in the liver, and overly severe hepatic steatosis progresses to nonalcoholic steatohepatitis (NASH), which is characterized by lipid peroxidation, inflammation, and fibrosis. Ubiquitin-specific proteinase 14 (USP14) regulates inflammation, hepatocellular carcinoma and viral infection, but the effect of USP14 on NAFLD is unknown. The aim of this study was to reveal the role of USP14 in the progression of NAFLD and its underlying mechanism. We demonstrated that hepatic USP14 expression was significantly increased in NAFLD in both humans and mice. Hepatic USP14 overexpression exacerbated diet-induced hepatic steatosis, inflammation and fibrosis in mice, in contrast to the results of hepatic USP14 knockdown. Furthermore, palmitic/oleic acid-induced lipid peroxidation and inflammation in hepatocytes were markedly increased by USP14 overexpression but decreased by USP14 knockdown. Notably, in vivo or in vitro data show that USP14 promotes NAFLD progression in a cytochrome p4502E1 (CYP2E1)-dependent manner, which exacerbates hepatocyte oxidative stress, impairs the mitochondrial respiratory chain and inflammation by promoting CYP2E1 protein levels. Mechanistically, we demonstrated by immunoprecipitation and ubiquitination analysis that USP14 inhibits the degradation of heat shock protein 90 alpha family class A member 1 (HSP90AA1) by decreasing its lysine 48-linkage ubiquitination. Meanwhile, upregulation of HAP90AA1 protein promotes CYP2E1 protein accumulation. Collectively, our data indicate that an unknown USP14-HSP90AA1-CYP2E1 axis contributes to NAFLD progression, and we propose that inhibition of USP14 may be an effective strategy for NASH treatment.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Citocromo P-450 CYP2E1/genética , Endopeptidases , Proteínas de Choque Térmico HSP90/genética , Inflamação , Chaperonas Moleculares , Hepatopatia Gordurosa não Alcoólica/genética , Peptídeo Hidrolases , Ubiquitina , Ubiquitina Tiolesterase/genética
11.
Clin Epigenetics ; 15(1): 132, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596607

RESUMO

BACKGROUND: Acetaminophen is a commonly used medication by pregnant women and is known to cross the placenta. However, little is known about the biological mechanisms that regulate acetaminophen in the developing offspring. Cytochrome 2E1 (CYP2E1) is the primary enzyme responsible for the conversion of acetaminophen to its toxic metabolite. Ex vivo studies have shown that the CYP2E1 gene expression in human fetal liver and placenta is largely controlled by DNA methylation (DNAm) at CpG sites located in the gene body of CYP2E1 at the 5' end. To date, no population studies have examined the association between acetaminophen metabolite and fetal DNAm of CYP2E1 at birth. METHODS: We utilized data from the Boston Birth Cohort (BBC) which represents an urban, low-income, racially and ethnically diverse population in Boston, Massachusetts. Acetaminophen metabolites were measured in the cord plasma of newborns enrolled in BBC between 2003 and 2013 using liquid chromatography-tandem mass spectrometry. DNAm at 28 CpG sites of CYP2E1 was measured by Illumina Infinium MethylationEPIC BeadChip. We used linear regression to identify differentially methylated CpG sites and the "DiffVar" method to identify differences in methylation variation associated with the detection of acetaminophen, adjusting for cell heterogeneity and batch effects. The false discovery rate (FDR) was calculated to account for multiple comparisons. RESULTS: Among the 570 newborns included in this study, 96 (17%) had detectable acetaminophen in cord plasma. We identified 7 differentially methylated CpGs (FDR < 0.05) associated with the detection of acetaminophen and additional 4 CpGs showing a difference in the variation of methylation (FDR < 0.05). These CpGs were all located in the gene body of CYP2E1 at the 5' end and had a 3-6% lower average methylation level among participants with detectable acetaminophen compared to participants without. The CpG sites we identified overlap with previously identified DNase hypersensitivity and open chromatin regions in the ENCODE project, suggesting potential regulatory functions. CONCLUSIONS: In a US birth cohort, we found detection of cord biomarkers of acetaminophen was associated with DNAm level of CYP2E1 in cord blood. Our findings suggest that DNA methylation of CYP2E1 may be an important regulator of acetaminophen levels in newborns.


Assuntos
Citocromo P-450 CYP2E1 , Metilação de DNA , Recém-Nascido , Gravidez , Feminino , Humanos , Citocromo P-450 CYP2E1/genética , Sangue Fetal , Acetaminofen , Coorte de Nascimento
12.
Molecules ; 28(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446793

RESUMO

Acrylamide (ACR) is produced under high-temperature cooking of carbohydrate-rich foods via the Maillard reaction. It has been reported that ACR has hepatic toxicity and can induce liver circadian disorder. A high fat diet (HFD) could dysregulate liver detoxification. The current study showed that administration of ACR (100 mg/kg) reduced the survival rate in HFD-fed mice, which was more pronounced when treated during the night phase than during the day phase. Furthermore, ACR (25 mg/kg) treatment could cause chronotoxicity in mice fed a high-fat diet, manifested as more severe mitochondrial damage of liver during the night phase than during the day phase. Interestingly, HFD induced a higher CYP2E1 expressions for those treated during the night phase, leading to more severe DNA damage. Meanwhile, the expression of gut tight junction proteins also significantly decreases at night phase, leading to the leakage of LPSs and exacerbating the inflammatory response at night phase. These results indicated that a HFD could induce the chronotoxicity of ACR in mice liver, which may be associated with increases in CYP2E1 expression in the liver and gut leak during the night phase.


Assuntos
Citocromo P-450 CYP2E1 , Dieta Hiperlipídica , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Regulação para Cima , Acrilamida/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL
13.
Asian Pac J Cancer Prev ; 24(7): 2239-2244, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37505752

RESUMO

BACKGROUND: Colon cancer is the most common type of gastrointestinal cancer. Genetic factors have been shown to have a role in the development of colorectal cancers. The aim of this study was to assess the expression of Cytochrome P2E1 (CYP2E1) gene polymorphism as a potential prognostic biomarker in the diagnosis, treatment, and prognosis evaluation of patients with colorectal cancer. METHODS: in this cross-sectional study, all of our 100 patients with colorectal cancer who underwent surgical operation were included. DNA was extracted from the tumor specimens to assess Cytochrome P2E1 (CYP2E1) Gene polymorphism by Conventional-PCR. RFLP-PCR method was used for RsaI polymorphism evaluation. Patients' characteristics were also recorded and their associations with CYP2E1 were assessed. RESULTS: One hundred tumor specimens were assessed. In total, 88 had wild-type, 8 had purely a 96 bp insertion in CYP2E1, and 4 were partially mutated by a single allele insertion. Generally, 10% of samples had positive results for the RsaI polymorphism. There were no statistically significant associations between CYP2E1 gene polymorphism and number of lymph nodes removed during the operation (P = 0.353), number of positive lymph nodes (P = 0.668), tumor specificity including mucinous or non-mucinous (P = 0.053), tumor invasion (P = 0.074), grading (P = 0.898), differentiation (P = 0.941), tumor location (P = 0.42) or staging (P = 0.182). CONCLUSION: There was no association between RsaI type CYP2E1 polymorphism and colorectal cancer risk. Our study does not support the use of this biomarker to evaluate the prognosis of colon cancer.


Assuntos
Neoplasias Colorretais , Citocromo P-450 CYP2E1 , Neoplasias Colorretais/diagnóstico , Humanos , Citocromo P-450 CYP2E1/genética , Biomarcadores Tumorais/genética , Estudos Transversais , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais
14.
Genes (Basel) ; 14(7)2023 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-37510297

RESUMO

Increasing alcohol consumption by women of childbearing age contributes to more frequent cases of fetal alcohol spectrum disorder. The cause of the syndrome is fetal alcohol exposure, particularly what is referred to as high prenatal alcohol exposure. Low metabolic activity of fetal enzymes shifts the burden of ethanol removal to maternal metabolism. One of the factors influencing the pathogenesis of FASD is the genetic background. It can determine the rate of elimination of ethanol, thus increasing or decreasing the time of fetal exposure to ethanol and also decreasing its concentration. Genetic polymorphisms could potentially play a significant role in these processes. In the present study, we considered three polymorphisms of genes implicated in the synthesis of enzymes involved in ethanol metabolism, i.e., ADH1b (rs1229984), ADH1b/c (rs1789891), and CYP2E1 (rs3813867). The studied group consisted of 303 children and 251 mothers. Both mothers' and children's genotypes were considered in our analysis. There were no statistically significant differences between the respective groups of genotypes of the studied polymorphisms. However, the genetic background of FASD is still elusive.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Efeitos Tardios da Exposição Pré-Natal , Criança , Feminino , Humanos , Gravidez , Citocromo P-450 CYP2E1/genética , Etanol/metabolismo , Transtornos do Espectro Alcoólico Fetal/genética , Polimorfismo Genético
15.
Gut Microbes ; 15(1): 2231590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37431867

RESUMO

The gut microbiota affects hepatic drug metabolism. However, gut microbial factors modulating hepatic drug metabolism are largely unknown. In this study, using a mouse model of acetaminophen (APAP)-induced hepatotoxicity, we identified a gut bacterial metabolite that controls the hepatic expression of CYP2E1 that catalyzes the conversion of APAP to a reactive, toxic metabolite. By comparing C57BL/6 substrain mice from two different vendors, Jackson (6J) and Taconic (6N), which are genetically similar but harbor different gut microbiotas, we established that the differences in the gut microbiotas result in differential susceptibility to APAP-induced hepatotoxicity. 6J mice exhibited lower susceptibility to APAP-induced hepatotoxicity than 6N mice, and such phenotypic difference was recapitulated in germ-free mice by microbiota transplantation. Comparative untargeted metabolomic analysis of portal vein sera and liver tissues between conventional and conventionalized 6J and 6N mice led to the identification of phenylpropionic acid (PPA), the levels of which were higher in 6J mice. PPA supplementation alleviated APAP-induced hepatotoxicity in 6N mice by lowering hepatic CYP2E1 levels. Moreover, PPA supplementation also reduced carbon tetrachloride-induced liver injury mediated by CYP2E1. Our data showed that previously known PPA biosynthetic pathway is responsible for PPA production. Surprisingly, while PPA in 6N mouse cecum contents is almost undetectable, 6N cecal microbiota produces PPA as well as 6J cecal microbiota in vitro, suggesting that PPA production in the 6N gut microbiota is suppressed in vivo. However, previously known gut bacteria harboring the PPA biosynthetic pathway were not detected in either 6J or 6N microbiota, suggesting the presence of as-yet-unidentified PPA-producing gut microbes. Collectively, our study reveals a novel biological function of the gut bacterial metabolite PPA in the gut-liver axis and presents a critical basis for investigating PPA as a modulator of CYP2E1-mediated liver injury and metabolic diseases.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Camundongos , Animais , Camundongos Endogâmicos C57BL , Acetaminofen/toxicidade , Citocromo P-450 CYP2E1/genética
16.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(3): 306-317, 2023 Jun 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37476942

RESUMO

OBJECTIVES: To investigate the effect and mechanism of lipid nanoparticle (LNP) delivery of small interfering RNA (siRNA) targeting Cyp2e1 gene on subacute alcoholic liver injury in mice. METHODS: siRNA targeting Cyp2e1 gene was encapsulated in LNP (si-Cyp2e1 LNP) by microfluidic technique and the resulting LNPs were characterized. The optimal dose of si-Cyp2e1 LNP administration was screened. Forty female C57BL/6N mice were randomly divided into blank control group, model control group, si-Cyp2e1 LNP group, LNP control group and metadoxine group. The subacute alcoholic liver injury mouse model was induced by ethanol feeding for 10 d plus ethanol gavage for the last 3 d. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, and the superoxide dismutase (SOD) activity as well as malondialdehyde, reactive oxygen species, glutathione, triacylglycerol, total cholesterol contents in liver tissue were measured in each group, and liver index was calculated. The expression of genes related to oxidative stress, lipid synthesis and inflammation in each group of mice were measured by realtime RT-PCR. RESULTS: Compared with the model control group, the levels of liver index, serum ALT, AST activities, malondialdehyde, reactive oxygen species, triacylglycerol, total cholesterol contents in liver tissue decreased, but the SOD activity as well as glutathione increased in the si-Cyp2e1 LNP group (all P<0.01). Hematoxylin-eosin staining result showed disorganized hepatocytes with sparse cytoplasm and a large number of fat vacuoles and necrosis in the model control group, while the si-Cyp2e1 LNP group had uniformly sized and arranged hepatocytes with normal liver tissue morphology and structure. Oil red O staining result showed si-Cyp2e1 LNP group had lower fat content of the liver compared to the model control group (P<0.01), and no fat droplets accumulated. Anti-F4/80 monoclonal antibody fluorescence immunohistochemistry showed that the si-Cyp2e1 LNP group had lower cumulative optical density values compared to the model control group (P<0.01) and no significant inflammatory reaction. Compared with the model control group, the expression of catalytic genes P47phox, P67phox and Gp91phox were reduced (all P<0.01), while the expression of the antioxidant enzyme genes Sod1, Gsh-rd and Gsh-px were increased (all P<0.01). The mRNA expression of the lipid metabolism genes Pgc-1α and Cpt1 were increased (all P<0.01) and the lipid synthesis-related genes Srebp1c, Acc and Fasn were decreased (all P<0.01); the expression of liver inflammation-related genes Tgf-ß, Tnf-α and Il-6 were decreased (all P<0.01). CONCLUSIONS: The si-Cyp2e1 LNP may attenuate subacute alcoholic liver injury in mice mainly by reducing reactive oxygen levels, increasing antioxidant activity, blocking oxidative stress pathways and reducing ethanol-induced steatosis and inflammation.


Assuntos
Etanol , Fígado , Animais , Feminino , Camundongos , Antioxidantes/metabolismo , Colesterol/metabolismo , Etanol/metabolismo , Etanol/farmacologia , Glutationa/metabolismo , Glutationa/farmacologia , Inflamação , Lipídeos/farmacologia , Malondialdeído/metabolismo , Malondialdeído/farmacologia , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , RNA Interferente Pequeno/farmacologia , Superóxido Dismutase , Triglicerídeos/metabolismo , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo
17.
BMC Pregnancy Childbirth ; 23(1): 403, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264354

RESUMO

BACKGROUND: Cytochrome P450 2E1 (CYP2E1) plays a key role in the metabolism of xenobiotic and endogenous low-molecular-weight compounds. This study aimed to determine if the genetic variations of 96-bp insertion/deletion (I/D) and C-1054T (rs2031920) in CYP2E1 were associated with the risk of gestational diabetes mellitus (GDM). METHODS: CYP2E1 polymorphisms were genotyped in a case-control study of 1,134 women with uncomplicated pregnancies and 723 women with GDM. The effects of genotype on the clinical, metabolic, and oxidative stress indices were assessed. RESULTS: The CYP2E1 C-1054T variant was associated with an increased risk of GDM based on the genotype, recessive, dominant, and allele genetic models (P < 0.05). The TT + CT genotype remained a significant predictive factor for GDM risk after correcting for maternal age and pre-pregnancy body mass index (OR = 1.277, 95% CI: 1.042-1.563, P = 0.018). Moreover, fasting insulin concentrations and homeostatic model assessment of insulin resistance were significantly higher in GDM patients carrying the T allele than in those with the CC genotype (P < 0.05). Furthermore, the combined genotype II + ID/TT + CT of the 96-bp I/D and C-1054T polymorphisms further increased the risk of GDM when the combined genotype DD/CC was set as the reference category (OR = 1.676, 95% CI: 1.182-2.376, P = 0.004). CONCLUSIONS: The T allele of the C-1054T polymorphism and its combination with the I allele of the 96-bp I/D variation in CYP2E1 are associated with an increased risk of GDM in the Chinese population. The - 1054T allele may be associated with more serious insulin resistance in patients.


Assuntos
Diabetes Gestacional , Resistência à Insulina , Gravidez , Humanos , Feminino , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Citocromo P-450 CYP2E1/genética , Resistência à Insulina/genética , Estudos de Casos e Controles , População do Leste Asiático , Predisposição Genética para Doença , Polimorfismo Genético , Genótipo , Polimorfismo de Nucleotídeo Único
18.
Biochem Pharmacol ; 214: 115638, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37290597

RESUMO

Sepsis is an infection-induced, multi-organ system failure with a pathophysiology related to inflammation and oxidative stress. Increasing evidence indicates that cytochrome P450 2E1 (CYP2E1) is involved in the incidence and development of inflammatory diseases. However, a role for CYP2E1 in lipopolysaccharide (LPS)-induced sepsis has not been completely explored. Here we use Cyp2e1 knockout (cyp2e1-/-) mice to determine if CYP2E1 could be a therapeutic target for sepsis. We also evaluated the ability of Q11, a new specific CYP2E1 inhibitor, to prevent and ameliorate LPS-induced sepsis in mice and in LPS-treated J774A.1 and RAW264.7 cells. Cyp2e1 deletion significantly reduced hypothermia, multi-organ dysfunction and histological abnormalities in LPS-treated mice; consistent with this finding, the CYP2E1 inhibitor Q11 significantly prolonged the survival time of septic mice and ameliorated multi-organ injury induced by LPS. CYP2E1 activity in liver correlated with indicators of multi-organ injury, such as the level of lactate dehydrogenase (LDH) and blood urea nitrogen (BUN) (P < 0.05). Q11 significantly suppressed the expression of NLRP3 in tissues after LPS injection; in vitro studies revealed that activation of NLRP3 signaling and increase of ROS was attenuated by Q11 in LPS-stimulated macrophages, which was reflected by reduced expression of caspase-1 and formation of ASC specks. Overall, our results indicate that Q11 improves the survival of mice with LPS-induced sepsis and attenuates sepsis-induced multiple-organ injury, suggesting that CYP2E1 could be a therapeutic target for sepsis.


Assuntos
Citocromo P-450 CYP2E1 , Sepse , Camundongos , Animais , Citocromo P-450 CYP2E1/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos/toxicidade , Estresse Oxidativo , Sepse/induzido quimicamente , Sepse/tratamento farmacológico , Sepse/metabolismo , Inflamassomos/metabolismo
19.
Food Chem Toxicol ; 176: 113812, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37150348

RESUMO

Our previous studies have shown that the metabolism of 1,2-dichloroethane (1,2-DCE) mediated by CYP2E1 could result in oxidative damage in the liver of mice. In the current study, we further investigated the effects of combined treatment with 1,2-DCE and high dose ethanol on liver and the mechanisms since both of them can be metabolized by CYP2E1 in the liver. There are several novel findings in the current study. First, combined treatment of mice with 1,2-DCE and high-dose ethanol could synergistically upregulate both protein and mRNA levels of CYP2E1, which might aggravate liver damage through CYP2E1-mediated oxidative stress. Second, the combined treatment could also synergistically trigger NLRP3 inflammasome activation and inflammatory responses in the liver. Third, the combined treatment synergistically upregulated the antioxidant defence systems in response to oxidative stress, however the compensatory mechanisms of antioxidant defence systems appeared to be insufficient to protect liver damage in the mice. Finally, the upregulated CYP2E1 expression was confirmed by using its specific inhibitor to play the crucial roles in liver damage in the mice during the combined treatment.


Assuntos
Etanol , Hepatopatias , Camundongos , Animais , Etanol/metabolismo , Antioxidantes/farmacologia , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Hepatopatias/metabolismo , Fígado , Estresse Oxidativo
20.
Int J Mol Sci ; 24(9)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37175827

RESUMO

The mechanisms of hepatic ischemia/reperfusion (I/R) injury, which occurs during liver transplantation or surgery, are poorly understood. The purpose of the current study was to generate and characterize a HepG2 cell line with a stable overexpression of CYP2E1 to investigate the role of the enzyme in hypoxia/reperfusion (H/R) injury in an ex vivo setting. GFP-tagged CYP2E1 and control clones were developed, and their gene expression and protein levels of GFP and CYP2E1 were determined using RT-PCR and ELISA/Western blot analysis, respectively. Additionally, the CYP2E1 catalytic activity was determined by UPLC-MS/MS analysis of 6-hydroxychlorzoxazone formed from the chlorzoxazone substrate. The CYP2E1 and control clones were subjected to hypoxia (10 h) and reoxygenation (0.5 h), and cell death and reactive oxygen species (ROS) generation were quantitated using LDH and flow cytometry, respectively. Compared with the control clone, the selected CYP2E1 clone showed a 720-fold increase in CYP2E1 expression and a prominent band in the western blot analysis, which was associated with a 150-fold increase in CYP2E1 catalytic activity. The CYP2E1 clone produced 2.3-fold more ROS and 1.9-fold more cell death in the H/R model. It is concluded that the constitutive CYP2E1 in the liver may play a detrimental role in hepatic I/R injury.


Assuntos
Citocromo P-450 CYP2E1 , Fígado , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Células Hep G2 , Hipóxia/genética , Hipóxia/metabolismo , Fígado/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Hipóxia Celular/genética , Hipóxia Celular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...